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ROBUST RATE CONTROL SYSTEM DESIGNS

FOR A SUBMERSIBLE

by

Lawrence J. Dreher

Submitted to the Departments of Ocean Engineering and Mechanical
Engineering in the Partial Fulfillment of the Requirements for the De- I
gree of Ocean Engineer and Master of Science in Mechanical Engineering.

ABSTRACT_

Two robust rate control system designs are carried out for a sub-
mersible (modeled by the NSRDC 2510 equations) in a turn using the Linear
Quadratic Gaussian approach with Loop Transfer Recovery. Separate com-
mand channels allow the submersible to maneuver independently in -

horizontal and vertical planes; the vehicle operator controls tbW bearing
5 2r~b~ and depth ratethrough a joystick-like device. 'V in configuration .,

is the conventional cruciform stern without differential coqtrol.

The first compensator desigrI l JW (r. control .r .. -
. t ftLL directly controls two vehicle state variables: pitch ( ) and the."

- .- ~ vehicle angular velocity, r, about the z-axis. The other system4 _&ee iL > " ,"
(the e .'- zcontroller) controls yaw (or heading) rate () and depthhxJe (z) __

v-- directly. Howver, this design relies on linearized equations of yaw
w' >-and depth rate to be employed by the compensator for state reconstruction.

A tool for Kalman Filter loop shaping is developed in which state
variables are scaled to provide good loop shapes and then recovered to
get controllers that are robust. Both controllers are compared on the
basis of performance in a nonlinear simulation. A robustness comparison -
is also conducted.

Based on limited simzulation data, this thesis concludes that the 7- C

L ~ ~controller provides better control of depth rate than the r -4 ,e
controller. Bearing atejerformance is essentially equal in both de-
signs; r6wever, the( -z controller appears less robust in certain
frequency ranges.

,.,%

THESIS SUPERVIOR: Dr. L. Valavani, Research Scientist,
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CHAPTER 1 2
INTRODUCTION

1.1 Background

The ruhmarine operator's objective is to maneuver his vehicle

freely in the ocean environment with respect to depth, heading, and

speed. In some situations, such as transits and partrols, the operator's

task in simplified to maintaining the submarine's depth, heading, and

speed essentially constant. Such maneuvering requirements are easily

accomplished by the crewmembers of the submersible. On the other hand,

docking, turning, and performing evasive maneuvers to avoid navigation

hazards or enemy torpedos are instances where the submarine's depth,

heading, and speed may have to be varied suddenly. Obviously these

maneuvers must be carried out safely and effectively. However, there are

many environmental and design obstacles that inhibit the operator from

fully controlling this process. These impediments include a cruciform
stern without differential control; cross-couplina of vhe planes of motion

(due primarily to the large sail area), variable hydrodynamic forces

(vorticity, turbulence), and a limited ability to "see" the environment

(no windows).

Largely through experience and familiarity with the vehicle

dynamic response, the conning officer learns that certain rudder angle/pitch

angle orders will result in a certain heading rate and depth rate for a

given speed. Rules of thumb have been developed for ordering the appro-

priate amount of pitch angle to accomplish the required depth change and

for an appropriate amount of stern plane angle to offset the vehicle's

1



tandency to dive in a turn. It is particularly difficult for the conning

officer to simultaneously command the turn rate and pitch angle due to

the interaction of complex dynamics. The operator's control task be-

cos increasingly difficult as the severity of the maneuver increases.

One would therefore seek to eliminate much of the guesswork associated

with performing these maneuvers by providing more subbtantial means of k

controlling the transient dynamics of the submarine.

It is the intent of this thesis to demonstrate a procedure for a

truly multivariable control system design that would provide the operator

with a means of achieving desired subnarine motion in depth and heading

through rate control. The multiple input - multiple output (MIMO) de-

sign methodologies based on the MIMO-ILQG formulation of Stein and Doyle

(1) will form the theoretical basis of this thesis. Specifically the
novel MIM-LQG/LTR approach proposed by Athans (2] for model based com-

pensators will be followed in this controller design. Importantly,

this methodology permits the design of dynamic compensators without the

need for full state feedback. This will allow the development of a

"robust" controller that is tolerant of modeling errors, nonlinearities,

and noise.

1.2 Outline of Thesis

Chapter 2 first introduces sukmarine dynamics and dvelopes the

linear models that will be used for two different control system designs

at 30 knots. The last section of the chapter will provide the desired

controller design specifications to be adhered to in the remainder )f

this design.

In Chapter 3 the theory that provides the basis for the LQG-LTR

process is introduced.

Chapter 4 is the design procedure chapter for the two controller

designs. A method to product consistent Kalman Filter loop shapes is

developed.

12



In Chapter 5 the obtained designs are evaluated through computer
4iuation and comarsons are made.*

Chapter 6 contains the sumary and suggestions for further study.

11
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CHAPTER 2 r*-

THlE NONINEAR SUBMARINE MODEL,

2.1 Introduction to Submersible Modeling

Suberrsible dynamics of motion and attitude can be described in a

variety of coordinate systems. For the purpose of developing a model of

su ersible motion, the equations of motion are expressed in the body

fixed axis because hydrodynamic forces and inertia are most readily com-

puted in a ship reference frame. From the aspect of ship guidance and

control, on the other hand, it may be desirable to describe motion, such

as vehicle course and depth, in terms of an earth reference frame.

General dynamical equations have been developed for the descrip-

tion ot an vehicle motion. These represent equalities of Newtonian

force and moment expressions, on the left hand side, and the so called

dynamical response terms on the right hand side:

- f (dynamical response terms) (2-1)

The general form of the force expression (Newton) is:

-+ d d5f - (momentum) - . (muG)

14



where

UG m + IV. + kw -
G

and the moment expression is

d (angular mmntu) G

where

+ ~pTq +r

(The definitions of u, v, w, p, q, and r are found in Table 2-1).

The subscript G indicates the origin to coincide with a body-fixed

coordinate system located at the vehicle center of gravity. However, the

reference point is seldom taken there since the center of gravity moves

with shifting weights inside the vehicle. Instead, the coordinate sys-

ten is gonerally taken about the suhmersible center of buoyancy, and so

provides a useful location for hydrodynamic estimates. This point is a

function of vehicle geometry and is therefore fixed. The left hand side p-

equations become somewhat more involved due to this coordinate system

transformation and will not be discussed further. Details of these

terms and simplifcations comonly used for ocean vehicle dynamics can

be found in reference [3].

The dynamical response terms of the right hand side of Eq. (2-1)

axe presented in Appendix A. These terms express the external forces

and moments exerted on the vehicle by hydrodynamic, control surface,

propulsion, and other effects. r

The force and moment equalities of Eq. (2-1) describe the six pos-

sible degrees of freedom of the submersible. The three forces are in

the axial, lateral, and normal directions, which give rise to motions

'5
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Table 2-1. Definitions of submarine states and controls.

Submarine States

State Definition Units

u - Component of U in direction of x axis (ft/s)

v Component of U in direction of y axis (ft/)

w - Component of U in direction of z axis (ft/s)

p - Component of about x axis (rad/s)

Component of about y axis (rad/s) ]
r - Component of 9 about z axis (rad!s)

- Angular rotation (roll) about the (radians)
x axis

e - Angular rotation (pitch) about the (radians)
y axis

Submarine Controls

8r: deflection of rudder

8s: deflection of stern plane

8b: deflection of sail planes

RPS: shaft revolutions per second

16



of surge, sway, and heave respectively. The three ment equations pro-

duce momnts and motion of roll, pitch, and yaw. Figure 2-1 shows the

positive directions of forces, moments, motions, and control surface

deflect ions.

2.2 The Nonlinear Computer Model :

The nonlinear model used for this design was derived from the

original NSRDC 2510 document "Standard Equations of Motion for Submarine

Simulation" [4]. These equations have since been improved to include

croseflow drag and vortex contributions. This model is installed on the

computer system at the Charles Stark Draper Laboratories. The nonlinear

model used in this thesis consists of 8 differential equations to describe

the submarine dynamics. The six equations derived from the force and

moment equalities account for the states u, v, , p. q, and r. The de-

pendence of these states on hydrostatic restoring forces about the pitch

and roll axis and their kinematic relations result in two additional

states, 0 and e. The definitions of these states are listed in Table 2-1.

At this point, it will suffice to state that ship motion in open

water is not sensitive to heading angle, on the other hand, the dynamics

of a suersible are affected by changes in buoyant forces brought about r

by moderate depth excursions. These forces were not accounted for in

the submarine model and, hence, depth is not included as a state in the
system equations. By choice, propulsion plant dynamics were excluded

in this model; the resulting propeller dynamics in an actual submarine

vary, depending on the operating procedure of engineering plant personnel

and would be difficult to model. Moreover, the model in its current ver-
sion does not include either the actuator dynamics, or the actual angle

rate limits of the control surfaces. Due to the importance of actuator

dynamics on the control of actual submersibles, they will be considered

as part of the augmented plant dynamics for this design in Section 4.1.

9
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The resulting eight nonlinear equations as used in the computer

simulation with the definitions of the hydrodynamic coefficients are given

-in Appendix A. Them coefficients are approximated by direct measurement

on a full scale or model su-Arins, or analytically. The accuracy of

the dynamic response of the modal is governed to a large extent by the 1

accuracy of these hydrodynamic coefficients. Additionally, acm forces

have yet to be modeled mathematically, and other effects such as vortex

shedding and separation effects are not possible to include in a linear

model and are most likely the weakest point in the design model.

2.3 Linear Modeling

2.3.1 Equations of Motion

The controller design procedure begins with the expression of the

equation of motion in linear time invariant state space form. The non-

linear, multivariable system that represents the submksarine is described

* by.

d
xt W f (x W), u W) (2-2)

Y(t W g (x W) (2-3)

where

* x is the state vector

ua is the control input vector

y is the output vector

These nonlinear equations can be linearized through a Taylor series ex-

dt

for small deviations of u(t) and x(t) from the nominal state u , x
-o

From Eq. (2-2) and (2-3) the linearized dynamics are derived as:

'9



(t x(t) + Beu(t) (2-4)

Ay (t) 2k C (xt) (2-5) '

where

Ax(t) - x(t) - x

Au(t) y(t) (2-6)

--. '

and

f(x (t), U (t))

-0

XMXm

UUMU

.00

II
3f(x, U)

A m (2-7)ax

NX

4p' -- 0
Umu

f (x, U)

a u 
(2-8)

-0

uMu

C g
.4 a (2-9)

axx
-- V

20
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The parametric linearization of the nonlinear equations was accom-

plished analytically in the interest of accuracy for obtaining good linear

models, given som of the modeling drawbacks already mentioned. Details

are given in Appendix A.

2.3.2 Nominal Point Selection

A most important step in the design process is to select a linear

model that best describes the dynamics of the submarine over the widest

possible range of operating condtions. The control system to be designed

• ~in this study will use as coxnnand variables and, therefore, control, in

some manner, depch and heading rates. The nominal point chosen for the

* design, then, will be taken about a submarine in a level turn (i.e.,

pitch angle, or e is zero), since this attitude of a submarine is the

"* most likely operating condition.

All four actuator variables; RPS, 6r, 6b, and 6s must be selected

to define the particular nominal operating point. The shaft RPS will

remain at that required for 30 knots in straight ahead motion. The

rudder deflection, 6r, can be set at arbitrary angles to cause the sub-

marine to turn at different rates. A rudder deflection of (+) 2 degrees

was selected for this nominal point design.*

The next condition involves the use of the stern and bow planes

that result in zero pitch while turning. For reasons outlined in the

next subsection, the sail planes will be "locked" at a zero deflection

angle for this model. With this constraint, the stern planes were per-

turbed on the nonlinear conputer model in order to achieve zero pitch

angle. The four actuator variables chosen result in the nominal design

point of Appendix B.

The linearization about (-) 2 degrees of rudder would yield different
system matrices than that obtained about (+) 2 degrees of rudderi this
is primarily attributed to dynamic asymmetry caused by rotation of the
vehicle propellor (torque reaction and flow).

21
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2.3.3 Output and Control Variable Formulations

In this subsection one will gain insight into the appropriate

selection of the output and control variables to accomplish the proposed r'.

* control design. This will eventually lead to the development, i. paral-

1l, of two controller designs based on two sets of output variables.

There will be some freedom in the choice of control (actuator) variables

as well, but their selection will be based on a rather casual approach.

a. Control Methodoloqy Constraints

The Loop Transfer Recovery method for the class of Model Based C%

Compensators, apart from its advantages, places a very important require-

ment on the design freedom at a very early stage. It will be seen in

later sections that the mathematics (singular values et al.) require a

square system, that is, thenumber of control inputs be equal to the number

of output controlled variables. Stated more precisely:

my(t) ER

u(t) =-

where R indicates the dimension space of the system. So the requirement

p m (2-10)

and with three independent control surfacbs available

p < 3 - "

Note that RPS is not a control variable in the present model.

22
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b. Control Input selection

it was proposed to have two "y" outputs for the operator to con-

trol through a "Joystick-like" device. From the requiement for a square

system p - m - 2. How, then, are the two independent control inputs

selected? Clearly one needs a rudder to produce motion in the horizontal

plane. For motion in the vertical plane, however, there are two control

surfaces available, the stern and sail planes, which provide a redundant

control capability. The stern planes provide about three and a half times

more force to affect q than the sail planes for the same deflection angle.

This can be seen by comparing entries B(5, 1) and B(5, 2) of the B matrix

in Table 2.2. Realizing the importance of controlling the stern planes,

there are two options concerning the use of the sail planes:

(1) Model the subiersible with the sail planes locked at some
angle, 6bo, orl

(2) Model the su rsible so that a linear relationship exists

between deflection of the stern and sail planes.

In either method, there is effectively only one independent control sur- H-
face for vertical motion control.

Table 2-2. Model based B matrix.

State 6s 8b 6r

u 0.29053E-01 -0.15339E-02 -0.10980E00

v O.OOOOOE+O0 O.OOOOOE+O0 0.21864E+01

w -o.18604E401 -0.13578E+01 -0.27856E-05

p 0.OOOOOE+O0 0. OOOOOE+O0 0. 39980E-01

q -0.45053E-01 0.13042E-01 0.91875E-06

0 .OOOOOE+00 0.OOOOOE+00 -0.55462E-01

4 0.OOOOOE+0O O.OOOOOE+00 O.OOOOOE+00

e 0. OOOOOE+O0 0.OOOOOE+00 0.OOOOOE+00

23



In the first option above, a constant deflection other than 6b * 0

may not prove to be ideal if the controller is to operate at arbritrary

pitch conditions in a turn. Additionally, if several nominal points were

selected for gain scheduling, then, when the controller shifted from one

set of gains to another, a step change in 6b may be required. This change

could lead to other problem and possible instabilities.

In this design, k has consequently 'men chosen to. equal zero so
that 6b - 0. This is consistent with current fleet suhbarine practice of

generally not using the sail planes to accomplish high-speed maneuvers.

The effect of k on robustress and performance will not be addressed in

this thesis.

c. Output Variable Selection

Ideally one would have the present systems directly control the

bearing rate, ,, and depth rate . The expressions:

(r cos o + q sin 8)/cos e (2-13)

and

z - -u sin 6 + v cos sin 0 + w cos cosO (2-14)

are nonlinear functions of the state variables.

To proceed further, the open-loop time domain linear model of the

plant in Figure 2-2 is introduced. Here the output variable, y(t), is

defined as X(t) - Cx(t). The C matrix will be an important parameter in

the design of the Model Based Compensator. The C matrix is a constant

matrix which represents the linearization of (2-13) and (2-14) using (2-9).

Letting y1 , , and Y2 - z' the coefficients of the C matrix are given in

Table 2-3. The matrix indices (1, 2, ..., 8) represent states u, v, w, p,

q, r, t, e, respectively, the subscript "o" indicating the (value of the)

state at the nominal point.

25



Figure 2-2. Linear open-loop plant modl.

Table 2-3. Linearization of outputs Jiand zto obtain the C matrix.k

sin

0L

C (1, 5)-
0

C(1, 6) 1 o

... ,x

-r sin* + q coos8

0(,7 0 0 0

(r coo~ + q co~ + tan 6
0~,8 0 0 0

coso
0

C(2, 1) sin e.
0

C(2, 2) cos e sin
0 0

C(2, 3) coB co 8 0-

O -0:

C(2, 7) - 0 coo 0 cos °  - 0 coB a Sill

C(2, 8) - u cos 8 v sin e sin w sin 8 cos
0 0 0 0 0 0 0
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b.4

To determine how accurately .(t) - Cx(t) represents the actual ob-

served outputs ; and z, the author has taken all states of a maneuver of

a subaarine in a turn and reconstructed the linear and nonlinear (actual)

representations of ; (t) and z(t). These results are presented in Fig-

uresa 2-3 and 2-4. It is seen that z becomes 50% of zactual it

is found that the relative deviation between the linear and actual z

decreases as increases in magnitude. ;actual and linear are
nearly identical over the full maneuver. The control design based on

these linearized states will be referred to in the remainder of this

study as the 4 - z controller.

An alternative to a C matrix which is dependent on the vehicle

states at the nominal point is to choose C such that its entries are

independent constants, but that would still represent rates that are

desirable to control.

Referring to Figure 2-4 once more one can see that such a term
for exists. The state r has, throughout this maneuver, remained within

4% of actual" This is made clear by referring to (2-13) and noting

that for nearly all turning maneuvers, r >> q. and the cos e 2 1. To

control depth rate, one can revert back to current subersible opera-

tional practice of commanding pitch angle. This follows from (2-14)

where u >> v, w so that z a -u - sin e a -u8. Since forward velocity is

known, z is proportional to 6 so C becomes:

C(1, 6) - 1

C(l, 8) 1 1

The designed based on this C matrix will be known as the r - e controller.
For implementation purposes the exact values of $ and z are always

available (observable) for both the nonlinear models and the actual su er-

sible. Observer devices to measure z include depth gauge measurement. For

more accurate designs with less environmental noise, gimballed accelerom-

eters could be integrated to provide 1. The installed rate gyros used
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Figure 2-3. Reconstruction of actual and linearized depth rate for
the silkm% ine in a turn.
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Figure 2.4. Reconstruction of actual and linearized turn rate, and the
state 'Y' far the submarine in a turn.
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for f ire control sys-tem can measure the submar ine s true heading rate, p
regardless of One vehicle attitude. The r and e states can be measuredL

with simiUl ease.

2.4 Dynamic Analysis

In this subsection the open-loop poles (elgenvaluss) and eigen-

vectors will be calculated, and the conditions for controllability and

observability of linear control system will be presented.

The eigenvalius of the A matrix resulting from the linearization

are shown in Table 2-4. The corresponding normalized eigenvectors are

*shown in Figure 2-5. It would appear that all modes are dominated by

the velocity states u, v, and w. A different picture results when the

values of the eigenvectors involving angle and angle rate states are

scaled from radians to degrees and the velocities u, v, and w remain

in feet/second. Although the choice of units was somewhat arbitrary,

the scaled and normalized eigenvectors of Figure 2-6 seem to provide a

clearer picture of the state contribution to the system modes. The com-

plex pole, -0.19 ±0.321, is associated with the natural roll behavior of

the sutimarine. The slowest pole, -0.013, is primarily a pitch mode. The

zeroes of the system will be discussed in Chapter 4, after the addition of

augmented dynamics.

Table 2-4. Complex eigenvalues of.A.

-0.190874E+00 0.320975 I

-0.190874E+00 -0.320975 1

-0.487435E+00 0.000000 1
-0.443184E+00 0.000000 1

-0.978560E-01 0.000000 1

-0.432690E-01 0.000000 1

-0. 591569E-01 0.000000 1

-0.133116E-01 0.000000 1
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Figure 2-6. sclaed eigenvectors of [A].
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L A

Controllability and observability properties need to be established

to proceed further with the control system design. Controlability is en-

sured only if the matrix
, fl

[, A, ... , A (2-)

has rank n. Similarly, observability is guaranteed if the matrix

C

CA

CA-i (2-16)

has rank n.

A simpler, but more conservative method than (2-15) and (2-16)

above will be used to establish controllability and observability. Sirce

eigenvalues of A are distinct and nonzero, one can find the complex modal

matrix, T, whose columns are the distinct eigenvectors, v1 . For any set

of scalars c i (not all zero):

EC v - 0
i-

implies that T is a nonsingular m&trix. Then the state equation can be

written in the modal domair. [5]:

:. A- x* . T-),_x* + T-l u
a- -

dt- ~ T x*+TB
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The controllability and observability conditions are then more than

satisfied by observing that the real parts of the columns of T 1 B and

*the rows CT have no zeros. This was found to be the case for both the

r -e and z -*systems

2.5 Performance Specifications

Performance specifications outlined in this section are not all

encompassing and may not coincide with established Navy specifications

for submersible control. The performance requirements as stated here

are mainly driven by the intuitive engineering approach to obtain good

co mand following, speed of response, robustness, and disturbance re-

Jection with due respect to the natural dynamics of the vehicle as

they emerge from the available model. These performance requirements

(guidelines) will be accomplished through loopshaping techniques to be

discussed in Chapter 3.

Since there are no natural integrator states (the 8 x 8 A matrix -.

is nonsingular), elimination of steady-state error to step inputs is not

possible. Good command following and elimination of steady-state errors

will be obtained through the use .of integrators in the command variable
channel. Although an actual rate control system may also experience

ramp-like commands from the "joy-stick", the command inputs here are

closer to being a step due to the large time constants of the system.

Therefore, the system described in this thesis will not be designed to

meet type-2 specifications.

The open-loop dynamic simulation demonstrates that achievable .

vehicle settling times due to deflections of control surfaces are a"

function of the vehicle speed. For a submersible at a speed of 30 knots,

settling time of 50 - 60 seconds are achievable. When settling is de-

fined to occur in 4 or 5 time constants, the resulting minimum band-

width requirements for crossover are 0.07 to 0.1 radians/second. From

the performance aspect it is desirable to have all channels crossover
at roughly the same frequency.

34
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On the high frequency side, one must be able to reject noise and

possible modeling errors. Nbise sources generally originate from the

envirorment (true sensor readings) or from the sensor itself. Sensor

noise typically ccues at a higher frequency than the system bandwidth and

should not affect ship dynamics since ship eigenvalues will typically lie

-in the lower frequency band. it is desired that the ship actuators do

not respond to normal envirormental disturbances that may cause unnces-

sary actuator motion. Of concern here is the effect of the submersible

operating close to the surface, but not so close as to be in the danger

of broaching, and experiencing excitations of surface waves. Based on

Figure 2-7 (6], it is apparent that a typical wave spectrum has a fre-

quency range between 0.2 and 2 radians/second. The excitation or driving

frequency the submarine experiences will be

W - w + ku cos (4)
e

where

w- frequency of encounter

S- wave spectrum frequency

k -w /g - wave number in deep water

u = ship forward velocity

0 - ship head relative to sea direction

then, based on an estimated max ship speed of 35 knots (60 fps):

,wi max - 9.5 rad/s (in head seas)S

w min - 0.13 rad/s (in following seas)
e
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localI I t 

Fl k=

I r

0.2 0.4 0.6 0.6 1.0 (CaV/OC)

Figure 2-7. Typical form of a wave s )ctrum
containing txell (from Ref. (6]).

and therefore at any vehicle speed, 35 knots or less, all other ship
headings relative to the sea will be contained within w max > w > w mmn.S 

e e 
"

The proposed controller will, then, be able to meet these minimum"
criteria with the suggested bandwidth, at least in the region where linear
behavior dominates the vehicle dynamics.
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CHAPTER 3

CONTROL SYSTEM DESIGN IETHODOWGY

3.1 Robustness

3.1.1 Robustness Design Considerations

Control system design frequently involves the tradeoff of realizing

high performance while preserving good command following, distzbance

rejection, and system stability. The achievement of high performance is

pointless if the control system becomes unstable as a result. This is

particularly important in the present design. Overall system instability

could cause the submersible, in some instances, to exceed its safe operating

depth or ground itself, resulting in the 1osL. of the submarine and its crew.

The multivariable methods used to assure stability and robustness will be

reviewed next.

Singular value analysis has evolved as a reliable method to evaluate

system stability and robustness in the presence of unstructured uncertainty.

The singular values of an (n x n) complex matrix A derived from the spectral

norm are defined byi
II 1 2

oi, " X .(A A) 1 , 2, .. ,n

where

H
A is the complex conjugate transpose of A

X is the ith eigenvalue operator
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in modeling the system dynamics and therefore will be used in this model.

Further~more, a premultiplicative error of the loop transfer function will

be defined to reflect errors at the plant output, am shown in Figure 3-3.

In this instance

L (a) -I + E (a)

so that the preaultiplicative rro, E (s), is foud to be
-pre

-pre 
I

Figure 3-3. MID feedback configuration reflecting
premultiplicative error at plant output.

From the Fundamental Robustness Theorem and the Theorem for Robust-

ness for Multiplicative Errors (Bee Lehtomlaki (71), for guaranteed stabil-

ity, the following inequality must hold:-

Cr [(~pE <() y .O n(I + (G(jw)IC(jw)) 1 (3-2)
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If the inequality (3-2) above is not true, it does aot necessarily

imPly the system must be unstable. Singular value analysis does not take -
into account the actual direction of the perturbation matrix that may

cause a system to becosm singular; hence the system may actually be more

robust than singular value analysis may indicate. Therefore the inequality

(3-2) above is conservative. b~

3.1.2 Scaling

Scaling is a method of weighting the physical units of a system,

through an appropriate transformation, so that the numerical values of

the variables become equally significant. Scaling and its effect in

designing robust multivariable control 3ystems has been resently dis-
cussed by Kappos (9) and Boettcher (8]. Apparently, scaling does in

fact change the singular value magnitudes, but it may not necessarily

change the robustness of the system (8]. Ostensibly, not all effects of

scaling are understood at present.

A systematic method does not yet exist to obtain optimal scaling.

Kappos [9] selects a scaling matrix based on the expected nominal departure

(error) of the output. Kwakernaack [10], although not specifically addres-

sing the robustness issue, similarly suggests weighting the states by
their tolerable error, i.e., a deviation of 10 ft/s in velocity may be

as bad as a deviation of 0.2 radians in pitch, and then base the weighting

on the ratio of the tolerable errors. In this thesis the author presents

a method that allows the system to scale itself through loop shaping

techniques. This procedure will be presented in Chapter 4.

A scaling transformation to transform state vectors must be diagonal

and positive to preserve the system eigenvalues. Briefly, if ',, y, and x

are the original state vectors, and u', y', and x' are a set of scaled

vectors, then:
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S u S U'

x -S x, (3-3)

conse~quently for a system of the original form:

x-Ax + BU

-Cx (3-4)

th tansfre marie bec~o

A' -S A S
- x --- x

S -_

-x -- y

Scaling directly affects transfer functions as veil. Defining the

open-loop transfer function, G20 (s) of Figure 2-2 as

G (i)-C(uI-A) B (3-6)-OL~s

i2 it can be ahown straightforwardly that the scaled transfer function be-
* cOes

G' (a) 6 G G(a)S (3-7)
-Y- -U

L
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Simiarly, scaling Epre (9), the promultiplicative error defined in Eq. (3-1),

one obtains
-1.

E'(s) - Z (u) S (3-8)
y- -Y

Finally, a useful property of the scaling transformation will be

developed next. Take the special case of Eq. (3-7) where 5 is the-U
identity matrix so that

G' (s) - S G(s) (3-9)

By taking the complex conjugate transpose of Eq. (3-9) above:

H G (s) S"  (3-10)

From Eq. (3-9) and (3-10) then

H -1 H 1lHG,(s)G', (,) - . G(,sG"(,)5 (3-11)

and, applying the two-norm implies

112_ (2)112 I1S- 1  u 2,l ( -2

so that

42
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Note that S "1 is not a function of s. Through matrix multiplication,

the diagonal entries of S ... S of the matrix S independently multiplyI: n -y
the rows of G(s). Knowing the following relation to hold

ImI ll Ial IIAI I

where a is a scalar,

it follows that the i singular values of ISl G(s)II satisfy
Um

[G'(s)] S i  iG()s (3-14)

--.

Hence, it is seen that the transformation matrix S directly effects the
y

magnitude of the singular values of the original transfer matrix. Equation

(3-14) will be an important tool that will be employed in Chapter 4 to help

select appropriate scaling transformations to achieve conaistent loop

shaping.

3.2 LQG Compensator

The Model Based Compensator (MBC) has evolved from the optimal esti-

mation theory (Kalman Filter) and optimal control theory (Linear-Quadratic

Feedback). The concepts presented here can be found in more complete form

in references [10] and (111. The form of the compensator used in this

design together with the state definitions is shown in Figure 3-4 with

the plant and compensator dynamics repreisented separately. The transfer

function definitions used in the remainder of this paper will be based on

Figure 3-4.

Referring to Figure 3-4, the error e(t) is the input and u(t) is

the output of the compensator; the overall MBC transfer matrix is defined

by

u(a) - K(s) e(s)
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where

-2.
K(s) - G(sI - A + BG + HC) H (3-15)

Also, it is easily shown that the overall closed-loop transfer function,
l)is

* (s) - det(sI -A + BG) det(sl -A + HC) (3-16)

It follows that the requirements for stability of the system are:

Re Xi[A -BGI < 0 (3-17)

and

Re X. [A - HC] < 0 (3-18)

which are the poles of the compensator.

The conditions for ensuring a stable compensator are now postulated.

From linear system theory, if the pair (A, B] is controllable (or stabiliz-

able), then there exists at least one feedback qain matrix G to ensure that

all closed-loop poles of (A - BG] are in the left half s-plane. G is

given by

G - R BK (3-19)

where K solves the Control Algebraic Ricatti Equation (CARE):

T -1 T0 -KA -AK - + KBR BK (3-20)

4.
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Likewise, if the pair [A, C1 is controllable (or detectable), then

-there exists at least one output gain matrix H such that all closed-loop

poles are in the left half a-plane. The matrix H is given by:

H _ TZ-l (3-21)

where Z solves the Filter Algebraic Ricatti Equation (FARE):

0 - EA +AT Z + LEL -EC cT-la (3-22)

3.3 Loop-Transfer Recovery

In the sequel, se properties of the Kalman Filter that forms

the basis for the Loop-Transfer Recovery (LTR) method to be employed in

this design will be discussed. The Kalman Filter loop transfer function,

is taken at point 1 on Figure 3-4. The resulting loop-transfer func-

tion is defined

C(sl A)-l H (3-23)

One can also define GL' the filter open-loop transfer function as

G C(sI -A) L (3-Z4)
-FOL

where L is a free design parameter that is chosen to give GVOL desirable

singular values to meet the performance and robustness specifications.

The Kalman Filter Domain Equality

G (s)1 (I + 1 ()) GH o s (
I + G (a) OL (3-25)

has been derived from Eq. (3-22), (3-23), and (3-24) where the substitu-

tion
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e * u_ for > 0

has been made in the FARE Eq. (3-22).

As

• 0.4q

in Eq. (3-25), it follows directly from the definition of singular values

that ha

IG 1±rFLi) (3-26)

which is valid for low frequency range, and represents the recovery of the

* loop shapes of the G from G The value of U is also a free-design
-K,, -..,

paramter.

The Kwakernaack Loop Transfer Recovery process (see e.g., Doyle,

Stein (1], Kwakernaack (121) is described next, in which the shapes of

the Ka]man Filter singular values of Eq. (3-26) are recovered in the loop-

transfer matrix of the Model Based Compensator. The loop-transfer matrix

of Figure 3-4 is given by

G(s) K(s) - C(sI - A) 1 BG(s A + BG + HC) H

(3-27)

The LTR method sets

Rin

and

2mT T

47
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in theCARE Eq. (3-20) . Thin, as

* te crreponing~ i Eq (-27) becomes 'large' so that Eq. (3-27)

becomes

Tr a C(sI-A) H (3-28)

---,nd, consequenntly

C. w o a (C(Jiil -A) H] (3-29)

for low frequ~encies.

The LTR method is guaranteed to work in the open-loop system is

minim=u phase. For non-minimumn phase systems there is no such guarantee,

although some recovery ol! performance and robustness properties are

expected as the non-minimm phase zeros move further away from the desired

operating bandwidth (see (13]).

Robustness Theorems

The following robustness properties can be derived from the Kalman

Filter Equality (3-25) and are required. for system robustness:

(1) o~(I +G(0) > 1 (3-30)

which follows directly from the KFE; and

(2) a mi + G' (j 1) (3-31)

which has been proved by IFappos (91.
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CHAPTER 4

COMPENSATOR DESIGN PROCEDURE

4.1 Augnted Dynamics

Augmenting the dynamics of the submersible control system serves a

dual purpose. One is to model the actuator dynamics to make the model as

accurate au possible, and achieve desirable roll-off at crossover for
robustness. The other is to include integrators to cause the compensator

to behave as a type-i system, which will permit the submersible to achieve K.
zero steady-state error to step inputs and disturbances (i.e., good command

following). The result will be to increase the order of the sytem by four

in the present two-input design.

:1 A block diagram of the. aagzmnted model appears in Figure 4-1. It

is seen that the augmented dynamics have been placed in the command channel.

u is the true commanded input (a physical variable), uct' the output of

the augmented dynamics, is not. The mathematics of the augmented states

will be manipulated in such a way as to provide a means to achieve the

desired loop shapes of 2L"

Actuator Dynamics

The complete actuator dynamics are governed by their mass proper-
ties of the rudder and planes, and angle rate limits imposed by the

electro-hydraulic servcmechanims -that position them. Since the rate

limits are highly nonlinear, they will not be modeled per se. instead,
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AUGMENTED DYNAMICS EXISTING PLANT

Figure 4-1. Augmented dynamics placed in command variable
channel of plant.

the compensator will be designed so that the rudder and stern planes are

never driven past their rate limits of 7 and 6 degrees/second respectively,

nor past their maximiu allcwable deflection angle.

The actuator dynamics of the rudder are represented by a second-

order system. These are given for the stern planes as

Wd - 1.37

- 0.9

and for the rudder as

1.09

- 0.9

as r approaches unity, a secoi I-order system begins to lose its oscillatory

characteristics and behavior tends toward a first-order system. Since this

is very nearly an overdamped system, the actuators will be modeled as a

first-order system. By Ogata (151 the rise time for a second-order system

is given by
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p2

Figure 4-2. Stern plane command channel with
augmented dynamics.

.<.6

Figure 4-3. Rudder comand channel with
augmented dynamics.

These dynamics are introduced to the 8th order state space repre-

sentation to produce a 12th order system. To get it in a form for further

design manipulation a new state vector is defined

S x -

r- where x' is the unaugmented 8th order system augmented with the two command

-channel actuator time lag states and x are the two integrator states in

the command channel. The augmented system can be written as
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and simplifying let

.+ u Ax A+Bu

II

0 X

01 - +B (4-2)

10 Cx

This form of state apace equations will be used in Section 4.2 to derive

suitable loop-shaping algorithms. The A and B matrices of the augmented

system are found in Appendix B.

* Augmented System Dynamics

The four additional states add two poles at the origin and one each

at -1.6 and -2.0 to those already listed in Table 2-4. The multivariable

zeros for both the r - 0 and ' - z system are listed in Table 4-1. Note

53
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Figure 4-4. Unauczmented open-loop plant; r 8 system,
singular values vs frequency.
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Figure 4-6. Augmented open-loop plant, r - e system
* singular values vs frequency.
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Table 4-1. Augmented system zeros (finite).

r - e System Zeros:

Z-1.M7WE-1

p..

-3. 2 * 12. M-01 .
A -1 4.334l1O026f- -3.0604Oa]t-02 5. IO~3s57]E..-c. .sgikre66-0"

6 7.zo,*SU11-01

that system has a non-minimum 'phase zero at 0. 7, the existence of

which is m~ost likely due to the relationship between the pitch (e) and

heave Mw states in z. It is pointed out here that both the actuator

dynamics and the non-minimun phase zero are beyond the desired system

bandwidth of 0.1. Therefore, they are not expected to effect the design

appreciably. However, the actuators have been incorporated in the design,

to provide additional roll-off at higher frequencies.

Open- Loop Transfer Function

The singular values of the unaugmented (8th order) G systems are
--OL

plotted in Figure 4-4 and 4-5. In both of these figures, the minimum

singular values correspond primarily to the turn related outputs, iJ and r.

The beginning of gain roll-off corresponds to a system pole as it would

in a Bode plot. The maximn sinu .lar values in both figures begin to

-2roll-off at 10 radians/, which corresponds to the pole at -0.013
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Figure 4-7. Augmented open-loop plant; 4 - z system;

singular values vs frequency.
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(the 6 - w dominated eigenvector of Figure 2-6). The minimum singular

values start to roll-off at 10"1 radians/s, which relates to the pole at
--- 0.097. This pole corresponds to the "slowest" eigenvector to first con-

tain coponents of the r state. The bandwidth corresponding to the r and

outputs is nearly an order of magnitude greater than the z and e outputs.

The open-loop singular values of the augmented (12th order) system
are shown in Figure 4-6 and 4-7. The integrators in the command channel

correspond to the slope of 1/s or 20 dB/decade at low frequency. Also note

that the minimum singular values of both figures are nearly identical over

-the chosen frequency range. It will be shown that either choice of r or

as an output variable will result in nearly equal performance in the con-

troller design.

4.2 Loop-Shaping Techniques

In Chapter 3 the notion of the free-design parameter and matrix L

was introduced to provide a means of shaping the singular values to meet

the design specifications. In this section, the author will derive a pro-

cedure to obtain a [GOLI that are tied together throughout the desired

operating bandwidth, and will eventually result in a desirable tight cross

pattern of the Model Based Ctmpensator loop transfer function T(s).

The filter open-loop transfer function is given in Eq. (3-24) as

- -l
C (e C~IA) L-FOL -

Let L be of the form
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where

L in all states excluding the integrator states

and, starting with the full augoented system dynamics in the state space

form as developed in Sq. (4-2)

one obtai~ns [

kA

-- .

Taking the block inverse

-1

a 5

alz A)"  - (4-3)

Now for low frequencies
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-A71

1- -- 0

-11

CuI - _) L_ C1 0  0]

0 -1 -B2
C L

-(4-4)

r
Hence, for mall 9, Eq. (4-4) further becomes

-1 TL-1

C(sI -A) -  La (4-5)

By Eq. (3-22)

-1
.,o ) -) C(s -A) 1L

To tie the singular values together, it is desirable to set

GZ

and, consequently, obtain from (4-5)

-1
__ -- i0 E2 (4-6)

, S

Finally, solving for L 2r

L , -(C A B (4-7)
-2 - -10 -T

.47
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The depen4ence of the low frequency singular values should be clear;

_L2 drives the controller through the integrator states.

An analogous method was used to the high frequency singular values

together. From Sq. (4-3) it follows that

- C(CCT)-l (4-e)

4.3 Yl.el Based Compensator Design ;1

Equations (4-7) and (4-8) were applied to both designs. Figures

4-8 and 4-9 are the plot* of the shaped ai(GoL) which show how the F...

singular values are ti. together at low and high frequencies. By varying

the design parameter P, these singular values can be shifted up or down.

However, neither plot would result in a tight crossover pattern at the

desired crossover frequency of 0.08 radians/s. It is through the use of

the scaling transformation properties developed in Eq. (3-14) that the

shapes of these singular values approach the desired shapes for good con-

mand following, disturbance -rejection, and crossover frequency specific&tions.

Referring to Figure 4-8 it is proposed that the minimum singular

value, r, be scaled to match the maximum singular value, 8, at its greatest

separation. This point occurs at a separation of about 24 dB, which is

equivalent to a ratio between the values of r and e of 16, at a frequency
of 0.02 radianp/s. For numerical convenience, r will be scaleA by a factor

of 10 (versus 16). This means that r will be observod in "tens of radians,

while the output 6 continues to have units of radians.

A similar approach is applied to figure 4-9. In this case, the maxi-

mum separation approaches 4 orders of magnitude. For numerical convenience,

• will be sclaed up by a factor of 10 (the same factor used for r above),

where z is scaled down by 0.01.
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Figurze 4-9. Shaped and unscaled filter open-loop transfer
function, j z system; singular values vs
frequency.
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frequency.
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LIand solving for u then

-Lc G (w)1} 2 .
(Oax -FPOL (a) -

where 6 is the (maximum) desired crossover frequency. The value of

obtained were 126 and 144 respectively, for the r - 8 and p - z controller,

using a maximus crossover frequency of 0.09 radians/s.

.1With the design parameters, P, L, and S thus determined, the design
-Y

can proceed with the application of the FARE Eq. (3-22) and (3-21) to

calculate the Kalman Filter gain matrix H. The singular values of

are plotted in Figures 4-14 and 4-15. The loop shapes have besin re-

covered in both cases with crossover in the range of 0.07 to 0.09 radians/s.

Finally, the controller gain matrix, K is calculated by the CARE

Eq. (3-20) and (3-19). The only free deeign parameter to choose is q, the

control weighting index. Generally, to prevent control saturation from

high gain of K, it makes sense to choose q as small as possible and still

meet the design specifications. in both controller designs, when q was set

equal to 10, a crossover of 0.075 radians/s was obtained by the singular

values of the loop-transfer matrix, T (s). These are plotted 2.n Figures 4-16

and 4-17. Note the roll-off at crossover is 20 dB/decade, as expected,

and that Eq. (3-27) fails to hold at frequencies above 0.7 radian/s.

7 Robustness

The singular value plots of the Kalman Filter return difference and

Kalman Filter inverse return difference matrices are shown in Figure 4-18

and 4-19 for the r - 8 system, and in Figure 4-20 and 4-21 for the ,p - z

system. The robustness criteria set forth in Eq. (3-30) and (3-31) have

been met.

A discussion of the robustness of the loop-transfer matrix according

to Eq. (3-2) is given in Chapter 5.
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singular values vs frequency.
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Figure 4-17. Loop-transfer recovery; P system; singular
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singular values vs frequency.
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CHAPTER 5

MW)EL BASE COMPENSATOR EVALUATION

5.1 Cepensator Design Implementation

In this section, the performance of both the r - 6 and , - con-

.trollers will be tested on the nonlinear submarine simulation to see how

closely the performance specifications are met and to check for instabili-

ties. Note that the linear plant dynamics G(s) presented in the feedback

configuration of Figure 3-4 has been replaced by the nonlinear plant

dynamics of the simulation. The states at point 2 of Figure 3.4 are

therefore the actual measure of output variables. This means that the

error vector, e(t), at the input of the Model Based Compensator is always

the true difference between the commanded input and the output variables.

In order to avoid the additional computations required to transform

the output variables back to their original units, the output variables are

handled in their scaled form. To maintain a properly scaled error vector,

e(t), the true output variables and the comand input variables, r(t), are

multiplied by the appropriate scaling transformation. Figure 5-1 illustrates

how the model based compensator feedback configuration for this design imple-

mentation is modified by scaling.

5.2 Evaluation of Output Variable Selection

Comparison of the two system performances will be accomplished in this

section to determine which rate control system provides better performance

and robustness characteristics. The performance evaluation will be based
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)PLANT

Figure 5-1. Modifications of the MBC feedback configured
due to scaling.

on commanding various bearing rates, while ordering zero pitch or zero

depth rate to the two compensators. The resulting behavior of the vehicle

. with respect to depth will then provide a common means of comparing the

response of the two designs.

The first simulation run for both controllers is for a small ex-

cursion about the nominal point of 1 degree/s and zero feet/s (or zero

pitch for the r - 8 system)u it is expected that the nonlinear model

should behave linearly in this vicinity and would provide a gauge of

how successful the model was in meeting some of the performance specifi-

cations. Tho entire state outputs for the i - z compensator simulation

are found in Figure 5-2. The P and z command errors under the control

input heading of Figure 5-2 indicate the performance. It can be seen

that settling times for both outputs are indeed within 50 - 60 seconds

and are in compliance with the performance specifications of Section 2.6.

Note also that there is already a small error in z after 60 seconds.

This error tends to zero as more time is allowed for the simulation, and

results in a maximun vehicle depth change of about 5 feet for this maneuver.

The command errors of the r - e compensator shown in Figure 5-3 exhibit

nearly the same performance as the - z compensator for the headinq rate

orders, but the e output state experiences a small overshoot. Figure 5-3

also shows that as 8 approaches the value of zero (level turn), the vehicle

depth continues to increase without apparent bounds. This is not a sign

of instability, but rather an indication that 8 is not a very accurate

representation of depth rate.
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When bearing rates were much greater than the nominal rate, th

system behaved in a much different fashion. The simulation results in

:Figures 5-4 are for a comanded bearing rate of 2 degrees/s, or about

double the nominal rate. Note here that the time scale has been expanded

to 400 seconds. The output error of i takes t 120 seconds to settle,

while the z error shows indications of settlii '-me time greater than

400 sconds. Figure 5-5 demnstrates similar r*. .s for the r - e con- '.~

trolleri the 8 error state has nearly the *am shape as the z error state

except for a different sign. Note that the dynamics of z and e are rather
omplicated and certainly not harmonic in nature. This is no doubt

caused by the nonlinear behavior of the submarine.

Ordinarily, performance measures are given in the form of settling

times, rise times, percent overshoot, etc. These conventional measures

cannot be applied exactly (unaltered) in this case due to the nonlinear

behavior that would render such indices meaningleas or misleading. For ,"
instance, a staady-state output error may prolong the measure of system

settling time, although the output error may have reached this particular

scate in a relatively short time.

Quantitative comparisona will be made, insteaA, through perform-

ancs indices that are based on ai integral error of the form

tf

P. 1. 9% (t) dt

for a step input of X, the cosmaned output, the integral error becomes

P.1. j tf f t t
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This is a particularly useful and convenient measure. As it turns

out, the change in depth, or depth excursion, in a specified time, tf, of

, 2.: a suibmrsible that is commianded to maintain a constant depth is equal to

. the depth rate integral error. Equation (5-1) will not be applied pre-

cisely to the r - e controller; hovever, the resulting depth excursions

and heading errors provide a common means to comare the performance of

the two control systems. These results are plotted in Figures 5-6 and .

5-7. Figures 5-6 showS no significant differences between either control

system's yaw rate integral errors. Sev-ral conclusions can be drawn from

Figure 5-7, however. Both controllers' performance is best near the

nominal point bearing rate (1 degree/a), although it can be seen that

the depth excursion of the r - 8 controller is greater. Again, this is

not surprising since e is only a partial description of the full depth

expression ((Eq. (2.14))M. For an equal interval of i degree/s on either

side of the nominal point, the depth excursions of the t - z controller

are nearly symmetrical with respect to the nominal point, whereas the

error of the r - 8 controller is less at lower turning rates. In either

case, the controllers provide better depth control than otherwise achiev-

able by manual means, although the rapid increase of depth for commanded

turning rates greater than 2 degrees/second or less than 0 degree/second

(opposite turn) may be an indication that the system is becoming less stable.

It is very unlikely that a submarine would stay in a maneuver like

this for very long since it would have completed a full (360 degee) turn in
about 3 minutes. A more realistic operatiag scenario was simulated.

Figure 5-8 shows a series of maneuvers in response to various reference

inputs listed in Table 5-1. Which are in the form of fast ramps (1 - 5

seconds). This is to simulate the commands an operator may issue through

the "joy-stick" in maneuvering his vehicle. An interesting observation

in Figure 5-8 is that commanded changes in 0 have very little effect on r

as indicated by points 1, 3, and 41 however, the commanded change in r

does have a substantial effect on the error in 8, as seen in point 2.

Point 5 of Figure 5-6 shows the effect of couwanding simultaneous changes

in rand .
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Table 5-1. Nonlinear simulation r - e. Time and the
corresponding reference inputs.

Point _xL (10 dea/s) (dL)

0.0 -. 1O0000E.02 O.0000001*00 -.
" 6.0 -. 1l000M02O O.OOOOMO 4® 50.0 -40000014OfO.00000E0Ol

101.0 0.00O0000E#00 O. ZOOOOOE+0128o.0 0.0000001400 0.200000E+01

t0o.0 0.000000E 00 0. 00000E*00zo20.0 o.oooooos.oo o.zoooooEooii-

20.0 0.000000400 0.0000001 00
30so.0 o.oooooo ,oo O.50OOOOEO1 k .

375. 0.00000+OO0.500000E+01
360.0 0.0000001.00 0.500000E.01
4e0.0 0.0 o01[,00 0.500000E001
44.0 -. SOOOOE% o 0.200000E+01
500.0 -. .50001 +02 0.20000E01-

I --

The full response of the 8 - z compensator to various command in-

puts are shown in Appendix C.

5.3 Robustness

To determine how close the controller is to being unstable, recall

that E (s) was given by
-pre

E (s) - [G(s) - G(s)] G (a) (3-1)
-pro

It is clear that for this simulation G(s) above is a function only of the

system nonlinearities since the hydrodynamic coefficients remain as pre-

determined constants. The structure of G(s), then, can be found for any

operating condition. Note in Figure 5-9 that a commanded of -2 degrees/s

corresponds roughly to 8 degrees of rudder. Since this region of controller

IL operation appears to be approaching its performance limit, G(s) will be

determined by linearization of the submarine dynamics about 8 degrees of

rudder.
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Figure 5.9. Steady state rudder required to achieve commanded
bearing rate.
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System robustness will then be studied through the inequality

a CE (jbu)] < a (I+(~w ~W) 3(3-2)max-re _ min(- + (Gjw) Kj))

Figures 5-10 and 5-11 provide a graphical interpretation of Eq. (3-2) above.

In both instances the maximum singular values of E (s) are equal to, or
-pre

slightly larger than the minimum singular values of the inverse return

difference matrix of the loop-transfer function for the bandwidth up to

0.1 radians/s. Hence the inequality (3-2) above is not satisfied and

stability can no longer be guaranteed.

For the i - z compensator of Figure 5-11 a bulge forms in the

singular values of E (S). This is most likely due to the presence of

non-minimum phase zero in the * - z system since the difference between

E (s) of either system can only be attributed to the C matrix used for-prethe outputs. Although the maximum singular value of E' e (s) is not greater
than the singular values of (I + T_ (s)) near the bulge, it is typically

at these higher frequencies ari above that other modeling errors (such as

unmodeled dynamics) are likely to occur in an actual submarine. The combina-

tion of the unmodeled errors in G(s) and the bulge in E (s) for the ' --Ipre
controller is more likely to result in an unstable system than, say, rela-

tively flat singular values of E that appears in Figure 5-10.-pre

5.4 Gain Scheduling

Gain scheduling involves the use of more than one set of matched

Kalman filter gain matrices (H) and control gain matrices (G) to provide

the compensator with the ability to extend acceptable performance and ro-

bustness requirements over the widest possible range of operating condi-

tions. These operating conditions for the rate controller design can be

expressed here in 3-dimensional "volumes". This concept is shown if

Figure 5-12. The specification of speed, rudder deflection, and stern

plane defection define a single point. On this diagram, one can plot
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Figure 5-10. Inverse return difference of recovered transfer function and
premultiplicative error; r -8 system; singular values vs
freqiuncy.
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Figure 5.12. Schematic showing operating volume for determination of model
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regions where, about a nominal point(s), the multiplicative error can be

determined and robustness checked in a test similar to Eq. (3-2) above.

This is called the region of guaranteed stability. Another volume on the

same plot is reserved for performance. It includes all points about the

nominal point that result in acceptable performance. The intersection of

the stability region and the performance region defines the outer bounds of

the operating range of the particular set of gains. Many nominal points

together would be required to cover the full possible operating range of

the submersible.

Gain scheduling can then be accomplished by two possible approaches:

(1) Establish large overlapping volumes around nominal points

where particular set of gains (including corresponding models

of the A, B, and C matrices) are satisfactory with respect

to performance and robustness. The shift of gains from one

region to another would be through a band-bang implementation.

This procedure, of course, requires implementation schemes

that would allow the gain shift to occur without violent

transients of the control surfaces.

(2) Select nominal points to span the volume, and schedule the

gains of the compensator through a quadratic or least squares

fit of the operating conditions through the nominal points.

Lively (14] has successfully implemented such a methodology.

It becomes difficult, however, to evaluate the robustness by

methods used in this thesis. One must somehow ensure that

all quadratically obtained gains result in enough robustness

to overcome the unmodeled dynamics.

5.5 Other Notes

When q, the control gain weighting index is increased over the value

of 10 used in this design, the gain entries of G, of course, increase. The

result is that:
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(1) The bandwidth of T(s) increases slowly to match the crossover

of G

(2) The control surface deflections for maneuvers similar to those

performed in this chapter increased, and tended toward satura-

tion as q increased further.

(3) The maximum rate limits of the actuators were exceeded.

(4) There was no noticeable increase in performance. Therefore,

the value of q was kept as small as possible consistent with

meeting the minimum bandwidth requirements.

5.6 Chapter Summary

The performance comparisons of and between the two compensator

designs are far from complete. It was the intent of this chapter to show

how one could begin to evaluate a design; a full evaluation of each con-

troller would require many more calculations to be completed. One might

conclude at this point that linearization required to obtain the C matrix

used in the ' - z controller has resulted in a somewhat less robust design.

However, the * - z controller provides more precise control of turning and

depth rates which is the ultimate control objective of this design.

The question of robustness away from the nominal point chosen in

this design was only partially ansered. Nonlinearities most likely pro-

vide the greatest source of modeling errors. Other dynamics that arise

from errors in the hydrodynamic coefficients and unmodeled dynamics are

not known at this time but are required in order to complete the robustness

picture before a practical design can be produced for a real submersible.

The control gain matrices for both control systems are found in

Appendix B.
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CHAPTER 6

CONCLUS IONS

6.1 Si.~ary

Multiple-input multiple output control system design methodologies

has been successfully employed to provide a means for an operator of a sub-

mersible to control heading and depth for complicated maneuvers. This

study is far from a completed design. However, results thus far are en-

couraging. Of significance this thesis has:

(1) Provided one of few available examples of a complex LQG/LTR

Model Based Compensator designs evaluated on a nonlinear

simulation.

(2) Developed a loop-shaping technique, using integrator aug-

mentation in the command input channel, in which singular

values can be brought arbitrarily close together and then

recovered through natural scaling of the output variables.

(3) Comparec. the performance and robustness of rate control

designs based on a constant C matrix (the r - e controller)

and a linearized C matrix (the - z controller). The - z

controller, which directly controlled the heading rate, ,

and the depth rate, z, provided better control of the sub-

marine depth in a turn than the r - 6 controller design.

Heading rate control was essentially equal in both designs.

However, the linearized C matrix of the t - z design showed

potential for less stability as the vehicle states deviated
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from the nominal point. The non-minimum phase zero of the

- z controller was outside the desired bandwidth and did

not effect the loop-transfer recovery process.

6.2 Recommendations

Much more work can be done to further provide practical uses of

the MIMO LQG-LTR methods used in this thesis and to take a deeper look

into achievable submarine performance through rate control systems. Some

topics not thoroughly covered in this thesis that could provide a basis

for further research include:

(1) A demonstration of stability and performance as a function of

state variable scaling to see if the natural scaling pro-

cedures developed in this thesis effect the actual performance

bandwidth over unscaled state variables or designs with differ-

ent scaling methods.

(2) Determining an error norm that combines both the known errors

due to the model deviations from linearity as well as errors

that estimate the tolerances of the hydrodynamic coefficients

and other modeling errors in order to provide a better picture

of the achievable compensator robustness.

(3) Checking the performance of the model in response to environ-

mental noise.

(4) Developing a practical method of gain scheduling so the con-

troller provides good performance in all attitudes and speeds.

(5) Determining how scheduling the sail planes (the k factor in

Eq. (2-11)) effects the performance and stability of the sub-

marine.

(6) Applying the design procedure used in this thesis to develop

control systems for different fin configurations, to possibly

include "Y" and "X" sterns, and differential control of a

cruciform stern.
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Table A-i. Dynamical response terms (Abkowitz).

I 1. Body Properties

Length

Geometry

Mass

Moments of Inertia

2. Properties of Motion

Orientation

x, yo z fixed coordinate system, reference at surface

*, e, angular rotations about the x, y, and z axis,
respectively

Body Motion

U linear velocity vector

S1 angular velocity

U linear acceleration vector

S angular acceleration

6 control surface deflection

6 control surface velocity

iS control surface acceleration

n propeller angular velocity

propeller angular acceleration

3. Fluid Properties

p mass density of fluid g acceleration of fluid

W viscosity p pressure of fluid

T surface tension PV vapor pressure of fluid

E elasticity of fluid
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A. 2 Nonlinear Equations of Motion

Explanation of Conventions used in Hydrodynamic Coefficients

Hydrodynamic coefficients used in the nonlinear and linear equations

of motion are generally written in the form

Xab .. ,

where X represents a force or moment and the subscripts a, b, ... represent

an angular velocity, linear velocity, rudder deflection, etc. The con-

ventional meaning of coefficients written in this form is

Xab... ;(a, b...) (X]

which are taken to be Taylor expansion coefficients.

Moments of inertia axe written in similar form, but all subscripts

following retain the usual meaning of coordinate system.
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3. BZAVz
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4. R.OLLING TORQUE (W
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5.PITCHING TORQUE (0)
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6. YAWING TORQUE (*1
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KNEATIC RELATIONS
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A. 3 Parametric Linearization

I, AXIAL FORCE (SURGE)
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11-I. LA'rAL PORCE

myo )a; -mz +Y.)A + (.1 -)ft;V G p r

1 vwOOO0
6u[Uty.+ Y5 r8r+ (rlY~,~ - 2 (u2 + V2,2) 3/2}

+ V fy +. (r ...i~y + + Y p +
0 V CVrn / ~0

22
yv +v+

0 0 0

+ rv 2( )+ya +(oi)

V V

0w 0

0U0 0

rY I v *

V )v2

0 0 0

a

* V 2 vr vv ~ ~ '~~jv

+ Iu 0 0

op{ 4IU -. r I.p +- I +
0 0o 0 0+ 0+w0

w1 r



IPOI
+ P ( [UY + v 0 (Y~ VP + +p 0 hByG +. 2 .-YII qo(Yp 9 4+

0*

CRFW

+ q( qva +p0 (Ypq I=G +r0 (Yqr SXG + 3q+

+ Ar l [ Y - a) + 0 ar + y n 1)+v[8~IrT~ Jw-) rn o e{IrI
I I FI *

1~~ *1 2CRF'W'T .- -0*w2 + Y wo + qo +Y-u r.- 2 y -
r a (qr mG) G 3r

0

+ 4 [(UTOT B ) 006 8 0 coo o

+ Ao [-W=r~ - B) sin 6 sin

+ An [Y u r + Y u v + yvvueSr

where: 1e lO tVfo

(,,2() 
2__ _ _ _ _

av z +i- 2 W)
av 2 JD(x) dx

ayCrW /zv (x)W Wo x

0 0

3Y H(Z v X) CW
'-CRF (- 2  w Hx 0 0

3q 2 T.x~ (xx) Cx)fL

CRFWv W +V A) W d

0 0

az~, (2v W) + w (x))

3r 2 Jf7T) xx

117



111. Normal. Pbrce (Heave)
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111. Noral. Force (Cont.)
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Xv. Rollinq Torque (Coat.)
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IV. Rolling Torque (Cont.)
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V. Pitchinq Torque
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V. Pfttobinq Torque (Coat.)
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V.iftching Torcru. (Cant.)
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V1. Yawing Torque.
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vi. Yawing Torque (Cont.)
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Table B-1. Nominal deasign point.

u 0 (FT/SEC) v0 (FT/SEC) W. (FT/SEC)

47.380 2.270 0.5319

P0 (RAD/SEC) q0 (RAD/SEC) r 0 (RAD/SEC)

-. 00003 0.00305 -.01829

s0(DG bo (DEG) Lro (DEG)

-.7350 0.00C0 2.0000

PHI (DEG) THETA0 (DEG)

-9.4520 -0.08156

RPS

2 .369
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C-1. Nonlinear Simulation of -Ccpeneator for

Various Commanded Inputs

(The simulation in this appendix is based on the following table

of command inputs for heading rate, in units of "tens" of degrees, and

depth rate, in unit of 0.01 * feet/a).Lr-7

Time PSIDOT Z DOT

0. -10.000 0.0
60. -10.000 0.0
65. -15.000 0.0

120. -15.000 0.0
125. -Ij.000 0.05
180. -15.000 0.05
185. 0.000 0.0
240. 0.000 0.0
245. -5.000 0.0
290. -5.000 0.0
295. -5.000 -. 1
350. -5.000 -. 1
355. -10.000 0.0
440. -10.000 0.0
445. -15.000 -. 1
600. -15.000 -. 1

''9
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